Monte Carlo Simulation Model for Commercial Residential Buildings (MCS-CRB) Use Case II Glossary **Glossary** #### MCS-LB ### ENCLOSURECONDITIONUPDATER_GABLE.m | Input
Variables | Description | Terms in Documentation | |--------------------|---|--| | direction i | a scalar describing the wind's direction of approach, it can be any integer between 1 and 8. A cornering wind is denoted by 2, 4, 6 or 8, wind hitting the short side of the building is denoted by 3 or 7, while wind hitting the building's long side is denoted by 1 or 5. | Enclosure Condition: the condition that describes the area of openings within a given building. For this model the enclosure condition is computed for every story and for the attic. The enclosure condition affects the internal pressure of the building and as a result the load | | RoofType | a string array
describing the
geometry of the
roof, it can be
'Gable' or 'Hip' | intensities can
change. | | RoofSlope | a string array
describing the
geometry of the | | 1 / 12 roof, it can be 'Gable' or 'Hip'. EaveHeigh a scalar t describing the height of the roof at the eave in feet. LengthFL a scalar describing the R building's reassigned floor plan length in feet. WidthFLR a scalar describing the building's reassigned floor plan width in feet. TotalNumb a scalar erofStories describing the total number of stories present in a building. Enclosure a string array ConditionA containing an ttic initial condition for the enclosure condition of the attic; it can be 'E', 'P', or 'O'. Enclosure a matrix (rows = ConditionA TotalNumberofSt **IIFloors** ories, cols = 1), containing the enclosure condition ('E', 'P', or 'O') for every story. Componen matrices **Enclosure** t Area containing the Condition: the area occupied by Maps condition that a component in a describes the location of a wall area of openings mapped by the within a given matrix indexes building. For this (matrix size = # model the of stories by # of enclosure wall sheathing condition is panels on that computed for wall). every story and for the attic. The Componen matrices enclosure t Damage identifying the condition affects Mappers damage of the internal particular pressure of the components for building and as a a given wall result the load (matrix size = # intensities can of stories by # of change. wall sheathing panels on that wall). A 1 denotes a damaged component while a 0 denotes an undamaged one. External scalars Pressure determined in Coefficient accordance with Possibilitie ASCE 7-05, they are function of S the wind effective area of the building and the approach direction of the wind. Failure_Id Matrix = ent_Sheat Identifies the hing sheathing panels that have failed with a value of 1. Failure_Lo Matrix = Thead_Sheath averaged pressure load on ing each sheathing panel, taking Area_of_S a matrix heathing comprising the area of each sheathing panel on the roof External a matrix Pressure containing the Coefficient weighted external S pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall). **Output Variables** GCpi A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages. GCpi_Attic A scalar indicating the internal pressure of the attic space. ## ENCLOSURECONDITIONUPDATER_HIP.m | Input
Variables | Description | Terms in Documentation | |---|---|---| | direction i | a scalar
describing the | Enclosure
Condition: the | | | wind's direction
of approach, it
can be any | condition that describes the area of openings | | | integer between
1 and 8. A | within a given building. For this | | | cornering wind is denoted by 2, 4, 6 or 8, wind | model the
enclosure
condition is | | | hitting the short
side of the
building is | computed for every story and for the attic. The | | | denoted by 3 or 7, while wind hitting the building's long | enclosure
condition affects
the internal
pressure of the | | | side is denoted
by 1 or 5. | building and as a result the load | | Failure_Id
ent_Sheat
hing_Hip_
| Matrix = Identifies the sheathing panels that have failed with a value of 1. (# = 1 | intensities can
change. | ``` or 2 is used in the identification of the particular Hip Region) Failure_Id Matrix = ent_Sheat Identifies the hing_Main sheathing # panels that have failed with a value of 1. (# = 1 or 2 is used in the identification of the particular Main Roof Region) Failure_Lo Matrix = The ad_Sheat averaged hing_Hip_ pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading (# = 1 \text{ or } 2 \text{ is}) used in the identification of the particular Hip Region) Failure_Lo Matrix = The ad_Sheat averaged hing_Main pressure load on _# each sheathing panel, taking into consideration ``` the contribution of each zone for each panel and their corresponding pressure loading (# = 1 or 2 is used in the identification of the particular Main Roof Region) **Areas** Matrix = Matrix identifying the total area of each sheathing panel on the Main Roof Regions. Units are ft^2 Areas_Hip Matrix = Matrix identifying the total area of each sheathing panel on the Hip Regions. Units are ft^2 RoofType a string array describing the geometry of the roof, it can be 'Gable' or 'Hip'. RoofSlope a scalar describing the roof slope condition: the condition that describes the area of openings within a given building. For this | EaveHeig
ht | a scalar
describing the
height of the
roof at the eave
in feet. | model the enclosure condition is computed for every story and for the attic. The | |-------------------------------------|---|---| | LengthFL
R | a scalar describing the building's re- assigned floor plan length in feet. | enclosure
condition affects
the internal
pressure of the
building and as
a result the load | | WidthFLR | a scalar
describing the
building's re-
assigned floor
plan width in
feet. | intensities can
change. | | TotalNum
berofStori
es | a scalar
describing the
total number of
stories present
in a building. | | | Enclosure
Condition
Attic | a string array containing an initial condition for the enclosure condition of the attic; it can be 'E', 'P', or 'O'. | | | Enclosure
Condition
AllFloors | a matrix (rows = TotalNumberofS tories, cols = 1), containing the enclosure condition ('E', 'P', or 'O') for every story. | | | Compone
nt Area
Maps | matrices containing the area occupied by a component in a location of a wall mapped by the matrix indexes (matrix size = # of stories by # of wall sheathing panels on that wall). | | |--|--|---| | Compone
nt
Damage
Mappers | matrices identifying the damage of particular components for a given wall (matrix size = # of stories by # of wall sheathing panels on that wall). A 1 denotes a damaged component while a 0 denotes an undamaged one. | | | External
Pressure
Coefficient
Possibilitie
s | scalars determined in accordance with ASCE 7-05, they are function of the wind effective area of the building and the approach direction of the | Enclosure Condition: the condition that describes the area of openings within a given building. For this model the enclosure condition is | | Failure_Id
ent_Sheat
hing | wind. Matrix = Identifies the sheathing panels that have failed with a value of 1. | computed for
every story and
for the attic. The
enclosure
condition affects
the internal
pressure of the
building and as | |--|---|---| | Failure_Lo
ad_Sheat
hing | Matrix = The averaged pressure load on each sheathing panel, taking into consideration the contribution of each zone for each panel and their corresponding pressure loading. | a result the load intensities can change. | | Area_of_S
heathing | = a matrix
comprising the
area of each
sheathing panel
on the roof | | | External
Pressure
Coefficient
s | a matrix containing the weighted external pressure coefficients for every sheathing panel in a given floor (matrix size = 1 by # of wall sheathing panels on that wall). | | ## **Output Variables** **GCpi** A vector whose length is equal to the number of floors of the building. The internal pressure is determined by the opening created by wall sheathing and window damages. GCpi_Atti A scalar indicating the С internal pressure of the attic space. ## *Model_Control.m ## R2W_Capacity_Gable.m | Input
Variables | Description | Terms in
Documentation | |---------------------------------|--|---| | rating Number_of _Trusses_ Row | scalar = Indicates the strength rating of the components: 1 (weak), 2 (medium), and 3 (strong) scalar = Indicates the number of r2w connections along the eave of the roof. | Roof sheathing: The 4x8 ft plywood panels that are attached to the roof trusses and provide a mounting system for the roof cover. | | Outp | ut Variables | |-----------------|--| | r2w_cap | Matrix contains the randomly assigned capacity of each of the r2w connection. The size of the matrix depends on the number of trusses and is equal to 2 by Number_of_Tr usses_Row (one row for each roof face). Units are lbs. | | mean_resis
t | A scalar value representing the mean resistance of the r2w connection after the FS is applied. | ## R2W_Capacity_Hip.m | Input
Variables | Description | Terms in
Documentation | |--------------------|---|---------------------------| | rating | scalar = Indicates
the strength rating
of the | | | | components: 1 | | | | (weak), 2 | | | | (medium), and 3 | | | | (strong). Variable | | | | is used to select | | | | the mean capacity | | | | of the roof | | | | components. | |